
Département d’informatique et de recherche opérationnelle

Université de Montréal

Yann-Gaël Guéhéneuc

Crash course on
design patterns

Assistant professor
guehene@iro.umontreal.ca, room 2345

Inspired from Olivier Motelet’s course (2001/10/17)

© Yann-Gaël Guéhéneuc 2004



2/30

Design patterns 
=

Tools for
object-oriented

designers



3/30

Content

n Feeling
– The Factory Method design pattern

n Seeing
– Origins
– Definition
– Structure

n Touching
– When and how to use design patterns
– Tools supporting design patterns



4/30

Factory Method (1/3)

n Need: A framework for programs that 
support multiple kinds of documents

n Problem: A program only knows when
it must create a new document, not 
what kind of document to create



5/30

Factory Method (2/3)

n Solution: Isolate the knowledge of 
which document to create and move 
this knowledge out of the framework 



6/30

Factory Method (3/3)

n Abstraction?
nQuality characteristics?



7/30

Origins (1/4)

“Each pattern describes a problem which occurs over 
and over again in our environment, and then describes 
the core of the solution to that problem, in such way that 
you can use this solution a million times over, without 
ever doing it the same way twice.”

“Each pattern is a three part rule, which express a 
relation between a context, a problem, and a solution.”

Christopher Alexander [Alexander, 1977]



8/30

Origins (2/4)

“The strict modeling of the real world leads to reflect 
today’s realities but not necessarily tomorrow’s. The 
abstractions that emerge during design are key to 
making a design flexible.”

Erich Gamma [Gamma et al., 1994]



9/30

Origins (3/4)

n Complex systems involve several 
classes and their instances

n Towards the reuse of more than one 
class: Sets of collaborating classes

nWhat is a good design style?



10/30

Origins (4/4)

n A pattern is a named, reusable solution 
to a recurrent problem in a particular 
context



11/30

Definition (1/2)

“The description of communicating objects and classes 
customized to solve general design problem in a 
particular context.”

“Each design pattern lets some aspect of system 
structure vary independently of other aspects, thereby 
making a system more robust to a particular kind of 
change.” 

[Gamma et al., 1994]



12/30

Definition (2/2)

n A way to enhance the reusability

n A way to encapsulate design 
experience

n A common vocabulary among designers



13/30

Structure (1/3)

n Name
n Problem
n Solution
n Consequences



14/30

And much more (2/3)

n Problem + Consequence = Context
– Intent, applicability, consequences

n Solution + Consequence = Strategies
– Structure, participants, collaborations

n Understanding
– Motivation, related patterns, known uses

n Use
– implementation and sample code



15/30

But… (3/3)

n Scattered information
– Informal text

n A general example rather than a 
general rule

Interpreting them all...



16/30



17/30

When to use design patterns?

nWhen encountering complex problems?
– Numerous design patterns (is there any 

complete list out there?)
– Granularity

• Requirements, analysis, architecture
• Design, implementation (idioms)
• Refactoring, testing
• …

Knowing them all...



18/30

How to use design patterns?

n Iterative induction process 
– From an example to an abstraction to an 

application to the abstraction to an 
application…

– Validation process?

n Categories
– Behavioural 
– Creational 
– Structural



19/30

Tools supporting design patterns

n “GoF” book
– Lists, classifications, relationships
– [Gamma et al., 1996]

n CASE Tools
– Fragments [Florijn et al., 1997]
– PatternsBox and Ptidej [Albin et al., 2001]

n Navigation
– Tutor [Motelet, 2000]



20/30

PatternsBox and Ptidej

Demos?



21/30

Tutor

Demos?



22/30

References
n [Alexander, 1977] Christopher Alexander ; A Pattern Language ; New 

York Oxford University Press, 1977.
n [Gamma et al., 1994] Erich Gamma, Richard Helm, Ralph Johnson, 

and John Vlissides ; Design Patterns – Elements of Reusable Object-
Oriented Software ; Addison Wesley 1994.

n [Florijn et al., 1997] Gert Florijin, Marco Meijers, and Pieter van 
Winsen ; Tool Support for Object-Oriented Pattern ; Proceedings of 
ECOOP, 1997.

n [Albin et al., 2001] Hervé Albin-Amiot, Pierre Cointe, Yann-Gaël 
Guéhéneuc, and Narendra Jussien ; Instantiating and Detecting Design 
Patterns: Putting Bits and Pieces Together ; Proceedings of ASE, 
2001. 

n [Motelet, 2000] Olivier Motelet ; A Contextual Help System for 
Assisting Object-Oriented Software Designers in using Design 
Patterns ; EMOOSE Master Thesis, 2000



23/30

That’s all folks!

n Thank you for your attention!

nQuestions?
n Comments?



24/30

Workshop on design patterns

n Three design patterns
– Strategy
– Decorator
– Composite

n Purpose
– Questions
– Ideas
– Explanations



25/30

Strategy (1/2)



26/30

Strategy (2/2)

n What happens when a system has an explosion of 
Strategy objects? Is there some way to better 
manage these strategies?

n In the implementation section of this pattern, the 
authors describe two ways in which a strategy object 
can get the information it needs to do its job. One 
way describes how a strategy object could get a 
reference from the context object, thereby giving it 
access to context data. But is it possible that the data 
required by the strategy are not available from the 
context interface. How could you solve this problem?



27/30

Decorator (1/2)



28/30

Decorator (2/2)

n The implementation section of this pattern states that 
a decorator object’s interface must conform to the 
interface of the object it decorates. Consider an 
object O, that is decorated with an object D. Object D
shares an interface with object O because object D
« decorates » object O. If some instance of this 
decorator attempts to call a method m that is not part 
of O’s interface, does it mean that the object is no 
longer a decorator? Why is it important that a 
decorator object ’s interface conforms to the interface 
of the object it decorates?



29/30

Composite (1/2)



30/30

Composite (2/2)

n How does the Composite design pattern help to 
consolidate system–wide conditional logic?

n Would you use this pattern if you do not have a part–
whole hierarchy? In other words, if only a few objects 
have children and almost everything else in your 
collection is a leaf (a leaf has no children), would you 
still use this pattern to model these objects?



31/30

Relationships

n Decorator – Strategy
n Decorator – Composite
n Composite – Decorator

nOthers
– Abstract Factory – Singleton
– …


