Crasn course on
design patterns

Yann-Gaél Guéhéneuc

Assistant professor
guehene@iro.umontreal.ca, room 2345
Inspired from Olivier Motelet’s course (2001/10/17)

! l Département d’informatique et de recherche opérationnelle
Université de Montréal

© Yann-Gaél Guéhéneuc 2004

Design patterns

Tools for
object-oriented
designers

|
- Content

m Feeling
— The Factory Method design pattern

m Seeing
— Origins

— Definition
— Structure
= " Touching
m — When and how to use design patterns

— Tools supporting design patterns

Factory Method (1/3)

| m Need: A framework for programs that
support multiple kinds of documents

m Problem: A program only knows when
It must create a new document, not
what kind of document to create

Document l....—@d i Application
- Openy) CreateDocument(ﬁ

: Document* doc = CreateDocument();
Closef} NewDocumentl) o L--———————— docs. Add{doc):

Saval) OpenDocument() d-;}q:—':-{]pemf V.
Revert()

|
~ Factory Method (2/3)

m Solution: Isolate the knowledge of
which document to create and move
this knowledge out of the framework

docs
Document l....—c;} Application
Openy) CreateDocument() Document® doc = Createlocumentl);
Ciose(} MewDocument() o-f-————-—__ docs.Add{doc):
Savel) CpenDocument() doc—=0pen(),
Hewvert()

%3 Fal

‘ H MyDocument e —- - - - - - - - MyApplication
CreateDocument() O---—--—--—-1 retum new MyDocumeant ﬁ

m Abstraction?
m Quality characteristics?

Product

AN

ConcreteProduct

Factory Method

Creator

(3/3)

FactoryMeathody)
AnDparation() o+

;

product = FactoryMethodr) 1

ConereleCreator

FactoryMethod() o

return new EﬂncretEF'mductH

|
- Origins (1/4)

“Each pattern describes a problem which occurs over
. and over again in our environment, and then describes
the core of the solution to that problem, in such way that
you can use this solution a million times over, without
ever doing it the same way twice.”

“Each pattern is a three part rule, which express a
relation between a context, a problem, and a solution.”

Christopher Alexander [Alexander, 1977]

Origins (2/4)

“The strict modeling of the real world leads to reflect
today’s realities but not necessarily tomorrow’s. The
abstractions that emerge during design are key to
making a design flexible.”

Erich Gamma [Gamma et al., 1994]

classes and their instances

R |
-~ Origins (3/4)
| = Complex systems involve several

® Towards the reuse of more than one
class: Sets of collaborating classes

m What is a good design style?

Origins (414

= A pattern is a named, reusable solution
to a recurrent problem in a particular
context

Definition (1/2)

“The description of communicating objects and classes
customized to solve general design problem in a
particular context.”

“Each design pattern lets some aspect of system
structure vary independently of other aspects, thereby
making a system more robust to a particular kind of
change.”

[Gamma et al., 1994]

Definition (2/2)
m A way to enhance the reusability

m A way to encapsulate design
experience

® A common vocabulary among designers

Structure

= Name

m Problem
m Solution
m Consequences

(1/3)

And much more (2/3)

| = Problem + Consequence = Context
— Intent, applicability, consequences

m Solution + Consequence = Strategies
— Structure, participants, collaborations

m Understanding
— Motivation, related patterns, known uses

B mUse

M — implementation and sample code
|

But... (3/3)

m Scattered information
— Informal text

m A general example rather than a
general rule

]
m Interpreting them all...
uu

f'—_—-lm Proxy
saving state . Adapter)
Builder “’""Q
vl
b

craating
pomposiias

ermaating
chidran

Akl caumpoded
wfmm g Coemmand
to objects

fraris i T,
s I L .
‘ ““"5""‘5“‘5 the charn
Flywsight | “Sfhnng S visitor
changing skin I
VEISUS QU
mrickng
sharing Interpreter cpevilions l Chain of nacspnnslbility|
stralegies
&hAanng
Strateqy 'e'a "
®pmbois
2=
COMOtax
AT Obsearver
i State
Algorrna :
ﬂﬂ'ﬂ-!“'\--._._‘_‘____-__—.
Template Method | ————— offen uses
Prototype >
e faciony = Factory Method |
d_rfml"ic{ﬂy Implpment using
/,,,{ Abstract Factory

|
- When to use design patterns?

= When encountering complex problems?

— Numerous design patterns (is there any
complete list out there?)

— Granularity

« Requirements, analysis, architecture
* Design, implementation (idioms)
» Refactoring, testing

m Knowing them all...

— From an example to an abstraction to an
application to the abstraction to an
application...

— Validation process?
= Categories
— Behavioural

— Creational
— Structural

u
- How to use design patterns?
= [terative induction process

-
. Tools supporting design patterns

: " “GoF" book

— Lists, classifications, relationships
— [Gamma et al., 1996]

m CaAsE Tools

— Fragments [Florijn et al., 1997]
— PatternsBox and Ptidej [Albin et al., 2001]

2 = Navigation

M — Tutor [Motelet, 2000]
|

Demos?

- Ptk LT { FC

|
E PatternsBox and Ptidg
|

O sabulion 1 a3 0G
A e o s L it i i o v v a2 E v
Carrgsiia m i e pl o i cea it 5 Do e e i
Ve i o o 0L g b 0o ot e B it v ik
Laad = fhmeanpd e, £ o ces e I rcke nbed Parsg rap b
Lana-d = i aeanple coma s e Farapraph
Laad = fuaeample coma s iel THe
DT G e 0T P SR, 5D R T |
LGk £, [l M e
1 e e b 2 b v

\Compnsiie =l
¥ B radic Sk

1 G vl ek i | sioen sl sobvar
 Bimpls sutomati soher

& B2l profilem

1~ CUELOm il e

01 e e

Simnpnn pviin msian |

it e de 1'6"“1”‘

Repositary

=10l=|

ondnhentance
nedistor
emarta

id coupling the serder of & requesl =
fis racaier by giking more

an ore objecl 8 chancs o handhe

B request. Chain the receiving ohiacks

nd page the reaues] alang

g chain ulil anobject handles i

15|

Classificabion: Bahawioral

Properties | Sample | Apoty | Detect| ciose |

AT Wehod mmas dl

m futor

Pupear Haak
- o cHEs ks o anly s e brired | Intr 0 daws da'n raderd e o sl
i |

/ K

7 — .
/ Decorator | T
,,-’{ \'{ Inheritance
A

Interface Ib | Composite !

| ChainResponsibiity | limmpusiliun,
| Strategy

‘warlathan | i
: | ?m;mimm 5&; Navigation Route
— R i
| onion | Prodact | [——
; = _—ll'_' el] 4 Factory Method]\
#ariony S yeas P i / i e
el g L ~ | Abstract Class
TR] e iy Ee | Direct Implementation |/ | Template Mothod | \Jal
Abustlanes K .

w
=]
o
S
L
[4+]
w

Bl = [Gammaetd., 1994] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides; Design Patterns— Elements of Reusable Object-
Oriented Software; Addison Wesley 1994.

m [Florijnet al., 1997] Gert Florijin, Marco Meijers, and Pieter van

Winsen ; Tool Support for Object-Oriented Pattern ; Proceedings of
ECOOQOP, 1997.

HH
| References
m [Alexander, 1977] Christopher Alexander ; A Pattern Language ; New
Y ork Oxford University Press, 1977.

m [Albinet al., 2001] Herve Albin-Amiot, Pierre Cointe, Y ann-Gaél
Guéhéneuc, and Narendra Jussien ; Instantiating and Detecting Design
Patterns. Putting Bits and Pieces Together ; Proceedings of ASE,
2001.

m [Motelet, 2000] Olivier Motelet ; A Contextual Help System for
Assisting Object-Oriented Software Designersin using Design
Patterns; EMOOSE Master Thesis, 2000

|
That’sal folks!

m Thank you for your attention!

m Questions?
]

[m Comments?
=

- Workshop on design patterns

= Three design patterns
— Strategy
— Decorator
— Composite
m Purpose
— Questions

o — ldeas

m — Explanations
|

s

- Srategy

(1/2)

Composition {}mmmﬁumr ™ Compositor
Traverse() Compose()
Hepair) 0 /k
: I | I
! 3 SimpleCGompositor TeXCompositor ArrayCompositor
compositor-=Compose()
Compose() Composeal) Compaosal)

HH
- Jrategy (2/2)

= What happens when a system has an explosion of
HH Strategy objects? Is there some way to better
manage these strategies?

m In the implementation section of this pattern, the
authors describe two ways in which a strategy object
can get the information it needs to do its job. One
way describes how a strategy object could get a
reference from the context object, thereby giving it
access to context data. But is it possible that the data
required by the strategy are not available from the
context interface. How could you solve this problem?

Decorator

VisualComponent

Drawy)

(1/2)

component-=Draw()

Decorator: Draw();
DrawBorde),

comgonent
TextView Decorator
Diraw() Drawl}) S s=qosnmsnrmniSars o wsn
| |
ScrollDecorator BorderDecorator
Draw() Brawl) O nr TS E T e R E Ty
ScrollTo() DrawBorder)
scroliPosition borderWidth

|
. Decorator (2/2)

= The implementation section of this pattern states that
: a decorator object’s interface must conform to the
Interface of the object it decorates. Consider an
object O, that is decorated with an object D. Object D
shares an interface with object O because object D
« decorates » object O. If some instance of this
decorator attempts to call a method m that is not part
of O’s interface, does it mean that the object is no
longer a decorator? Why is it important that a
decorator object 's interface conforms to the interface
of the object it decorates?

Composite (1/2)

Client |— pol Component I._.

Clparation{;

AddfCompaonant)
Remove{Component)

GeatChildiing)

T

| | children
Leat Composite |

e

!u:rrallbg in children
g.Jperation();

Operation(} Oparation{) C---——-F-——-----—~
Add{Componant)
Remove(Component)

_H GiatChild(int)

=

Composite (2/2)

m How does the Composite design pattern help to
| consolidate system—wide conditional logic?

= Would you use this pattern if you do not have a part-
whole hierarchy? In other words, if only a few objects
have children and almost everything else in your
collection is a leaf (a leaf has no children), would you
still use this pattern to model these objects?

- Relationships

m Decorator — Strategy
m Decorator — Composite
m Composite — Decorator

m Others

— Abstract Factory — Singleton
] _

