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1 Virtual machines

Reference: [15], [17], and [18]

1.1 What?

Computing machine The fundamental of computer science is to provide a
universal computational framework to compute algorithms. An algorithm de-
fines a set of data and the sequences of instructions to manipulate that data.
The computation of the algorithm consists in following the instructions to trans-
form the data and to obtain a result. The machine performing the computation
of an algorithm is a computing machine. There exists four main types of com-
puting machines, depending on their abstractness. In the rest of this course, we
follow the example of the Greatest Common Denominator algorithm:

Example 1 (Greatest Common Denominator algorithm):
Euclid proposed an algorithm to compute the greatest denominator common to two
integers. Euclid’s algorithm may be iterative:

Algorithm GCD(x, y)

value x, y : integer >= 0;

return an integer >= 0;

begin

repeat

if(x >= y)

then

x = x - y;

else

x = y - x;

end if;

until(x == 0);

return(y);

end.

Or Euclid’s algorithm may be recursive:

Algorithm GCD(x, y)

value x, y : integer >= 0;

return an integer >= 0;

begin

if(y == 0)

then

return(x);

else

return(GCD(y, remainder(x, y));

end if;

end.

Turing machine (1936) The most theoretical computing machine is the
Turing machine. Conceptually, a Turing machine has a finite set of states, a
finite alphabet (with a blank symbol), and a finite set of instructions. Physically,
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it has a head that can read, write, and move on an infinitely long tape divided
into cells; each cell has a value of blank or a letter in the Turing machine’s
alphabet. An instruction is defined as a five-tuple:

{starting state, starting value, new value, movement, new state}

The starting state is the state where the head currently is. The starting
value is the value of the cell on which the head is positioned. The new state
and the new value replace the starting state and the starting value, respectively.
The movement specifies which direction the head moves by one cell. The head
halts when it can not find an instruction for the current state or the current
cell value. A Turing machine will start at the first non-blank cell. Usually,
states are named s0, s1, s2, etc. The alphabet A contains usually: B, for blank;
S, for the starting cell; and, 0 and 1. A number can be represented (but not
necessarily) by a series of 1 s with a length of n + 1 for a number n. Practically,
programming a Turing machine is programming in assembly language, with a
very low level of abstraction: It is hard to imagine the equivalent of a procedure
call. In a Turing machine, there is no place to store data other than the tape.
Therefore, it is hard to process more than one symbol at a time and the number
of states grows to huge proportions (as place-holders).

Example 2 (A Turing machine and an infinitely incrementing binary
counter):
The following Turing machine demonstrates an infinitely incrementing binary
counter. The Turing machine starts is state s0, which returns to the beginning
of the tape and then goes to state s1. While in state s1, the machine moves to
the right and changes any 1 into a 0 ; when the machine encounters a 0 or a B,
it changes it into 1 and goes to state s0. The following table summarizes the two
states:

If in state and on symbol then write and move and go to
s0 S — right s1

s0 A-{S} (B, 0, or 1 ) — left s0

s1 1 0 right s1

s1 0 1 left s0

Exercise 1 (A Turing machine infinitely incrementing a binary counter):
Starting from the graphical representation of a Turing machine in Figure 1, write
sequences following the rules defined in Exemple 2.

Figure 1: The starting tape for a binary counter incrementing infinitely.

Exercise 2 (Turing and the Greatest Common Denominator algorithm):
Implement Euclid’s Greatest Common Denominator algorithm for a Turing ma-
chine. (Consider representing numbers using integers.)
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Exercise 3 (Turing and completeness):
Look for information about the theory of Turing-completeness. In particular, search
for information on computability theory and on the halting problem. A good start
is http://www.wikipedia.org/wiki/Turing-complete.

λ- and π-calculus (1934) The λ-calculus is also a universal computational
framework. It has been proposed as a mean to study functions and their appli-
cations. More recently, the π-calculus has been introduced to formalize parallel
computations. The π-calculus encompasses the λ-calculus. λ- and π-calculus are
less low-level than a Turing machine and gave birth to several implementations,
the most famous being the family of functional programming languages (such
as Lisp, Scheme, or Haskell). The main problems in using λ- and π-calculus is
their lack of intuitiveness (perhaps).

Example 3 (Greater Common Denominator algorithm in λ-calculus):
Using λ-calculus and assuming the existence of if, =, remainder, and with Y as fixed-
point combinator, the Greatest Common Denominator algorithm may be expressed
as:

Y(λgcdλaλb.if(= b 0) then a else gcd b (remainder a b))

Example 4 (Greater Common Denominator algorithm in a functional
language):
In a functional language (i.e., Scheme), the Greatest Common Denominator algo-
rithm is:

(define (gcd a b)

(if (= b 0)

a

(gcd b (remainder a b))))

Register machine A register machine consists in a set of instructions exe-
cuted serially that operate on registers containing the data. The machine has
a set of basic instructions that, theoretically, can be very few (consisting only
of conditional jump, comparison, and assignment). Programming is quite easy,
because we normally formulate algorithms using registers (i.e., the variables in
Example 1). However, the register machine possesses many shortcomings, the
main ones being the serialization of instructions and the use of imperative pro-
gramming. Also, it is difficult to express intuitively recursion using a register
machine.
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Example 5 (Greater Common Denominator algorithm for a register ma-
chine):
The schemas in Figure 2 represent the data and the controller for the Greatest
Common Denominator algorithm. The data schema shows which registers are used
(a, b, and c), how the values are transferred from one register to another (a<-b...),
and the instructions producing values (remainder). The controller schema shows
the order of the instructions (the test, the transfer of the result of remainder into
register t, the transfer of the value of register b into register a, and the transfer of
the value of register t into register b).

Figure 2: The data flow and control flow of a register machine for the Greatest
Common Denominator algorithm.

Exercise 4 (Register machine and recursion):
Give a definition of recursion, tail-recusrion, and search on the duality between
recursive and iterative algorithms.

Stack machine A stack machine is a computing machine that uses a stack
for its internal storage. The stack behaves has a LIFO list (the Last value In is
the First value Out). It contains the results of the executed instructions. The-
oretically, it is of infinite size. A stack machine possesses two basic instructions
to manipulate its stack: push (to put a value on top of the stack) or pop (to
remove the top value from the stack). Other instructions may indifferently push
and pop values.

Example 6 (Greater Common Denominator algorithm for a stack ma-
chine):
The schema in Figure 3 represents some of the steps in the calculation of the Great-
est Common Denominator algorithm, using a stack machine. The schema follows
the iterative Greatest Common Denominator algorithm defined in Example 1.

Virtual machine A virtual machine is a piece of software that goes between
a program and the environment into which the program runs (operating sys-
tem, hardware...), as described in Figure 4. It is both an interpreter and an
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Figure 3: Steps in the calculation of the Greatest Common Denominator algo-
rithm with a stack machine.

just-in-time compiler. It interprets an intermediate language obtained from the
compilation of a higher-level programming language. It compiles the interme-
diate language just-in-time to call directly operating-system- or hardware-level
instructions.

Figure 4: The imbrication of the program into a virtual machine that runs within
an operating system that runs on a computer.

1.2 Pros?

Compiler writers’ point of view The compilation of a programming lan-
guage for a virtual machine reduces the amount of work needed by the compiler
writers. Let consider that we have n programming languages and m operating-
systems or pieces of hardware for which we want to compile the programming
language, then we need n * m compilers. Now, let consider that we have n
programming languages and 1 virtual machine implemented on m operating-
systems or pieces of hardware, then we only need n * 1 compilers.

Virtual machine writers’ point of view The intermediate language is
simpler in terms of its instruction set and idioms (for example, the intermedi-
ate language may represent all the loops with only two instructions: if and
goto), and it is richer in terms of computational information (for exemple, the
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intermediate language may know the types of all the references). Thus, the
implementation of a virtual machine requires no type-checking or control-flow
computation. It only necessitates the traduction of the intermediate language
instructions into operating-system- or hardware-dependent calls.

Maintainer’s point of view A virtual machine may provide special-purpose
interfaces to ease the work of profilers and maintainers. A virtual machine may
offer an interface to debug running programs (such an interface may contain
a method to stop a thread, to inspect a stack...), or it may offer an interface
to profile running programs (such an interface may contain methods to get the
execution of a method or the number of time a method is executed...). Special-
purpose interfaces also help the profilers and maintainers by integrating the
different aspects of software development in a consistent framework.

Users’ point of view A virtual machine may be available on several plat-
forms, this availability allows the user to write and to compile programs only
once, and to run them with similar results across several platforms (in terms of
execution semantics and execution time). In addition, a virtual machine may
propose sophisticated mechanisms: garbage collection, profiling, native call in-
terface, communication interface, debugging... These mechanisms are accessible
to any user who possesses a compiler to the appropriate intermediate language,
to the appropriate virtual machine.

Exercise 5 (Pros of virtual machines):
List other arguments or evidences on virtual machine usefulness.

1.3 Cons?

Language designers’ point of view When developing a new programming
language or when implementing a new compiler, language designers must con-
sider which intermediate language they wish to target. They must consider the
trade-offs between the intermediate language, its complexity, its expressiveness,
and the virtual machine, its availability, its services. The best virtual machine
(in terms of supported platforms and provided mechanisms) may understand
an intermediate language that does not fit the programming language (in terms
of paradigm, types...). For example, a functional language may be difficult to
compile into an imperative intermediate language. The complexity depends on
the programming languages and on the virtual machines available.

Virtual machine writers’ point of view The implementation of a virtual
machine may be difficult or impossible depending on the intermediate language,
the proposed mechanisms, and the platform. For example, the intermediate
language may offer multi-threading, while the platform only supports single-
process programs.
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Execution time The virtual machine stands between the program and the
operating-system or piece of hardware on which the program runs. It plays
the role of mediator between the program and the hardware and, thus, it slows
down their communication and the execution time of the program.

Exercise 6 (Cons of virtual machines):
List other arguments or evidences on virtual machine drawbacks.
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2 Java

History The Java Virtual Machine (JVM) is a virtual machine dedicated to
the Java programming language. It has been first introduced in 1996. The
context was originally house appliances: Sun wanted to offer a general frame-
work for communicating and programming house appliances. Their purpose
was to develop a common platform for house appliances (language, run-time).
(Another thing about Java is that the Oak team, original code name of Java,
looked at already-existing platform. They tried Visual Works, the problem was
that Parc Place asked for too much money...)

Then, the context evolved as the World Wide Web (www) grew bigger;
and, with the www, its main limitation: A lack of dynamic interaction with
the users. Sun’s HotJava web browser was the first to have a truly dynamic
potential: It made it possible to embed Java programs in www page.

Raison d’être The Java programs embedded in a www page run inside a
JVM. This offers three great advantages:

� The developers of the web browser may be different from the developers
of the JVM. For instance, Sun provides JVM implementations for all the
major operating systems and web browsers: This leverages the burden off
the web browser developers’ shoulders.

� The Java program running in the JVM is isolated from the operating
system. Any communication between the Java program and the the web
browser or the operating system is filtered by the JVM.

� Www pages have sophisticated interaction and calculation capabilities.

The Java programming language and the JVM Before we skim through
some features of the JVM, we take a quick look at the Java programming lan-
guage and the JVM. The Java programming language is an object-oriented
programming language. Its syntax is close to the syntax of C and C++. It
offers introspection mechanisms (the java.lang.reflect package) and multi-
threading (the java.lang.Thread? classes and the java.lang.Runnable in-
terface). It is possible to interact with the operating system, in a limited
way, through the java.lang.System class, and the java.lang.Process and
java.lang.Runtime classes. The Java programming language also includes a
mechanism of exception.

A typical session with the JVM The JVM executes Java programs. First,
the user gives the JVM the name of the main class of the program:

java -classpath . emn.course.vm.GCD

The JVM starts, it initializes its internals. The JVM creates two threads
(Signal Dispatcher and CompileThread0, in Sun’s JVM). The JVM creates
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the default instance of class ClassLoader. This default class loader loads the
class given in the command line. The JVM executes the main() method of the
loaded class and creates the required threads (for example, AWT-EventQueue-0).
The program executes. When needed, the JVM calls the garbage collector. Fi-
nally, the Java program ends, the JVM dies, and with it all the running threads.

Exercise 7 (JVM use):
Detail further a typical session with the JVM.

2.1 Java Virtual Machine

Reference: [13]

The JVM is a hybrid of a register machine and of a stack machine. The JVM
supports multi-threading. The JVM is composed of:

� Among all threads:

� A heap. All threads share the heap. The heap is the runtime data
area from which the JVM allocate memory for all instances and ar-
rays.

� A method area. The method area stores per-class structures such as
the constant pool, field, method data, and the code for methods and
constructors.

� Native method stacks. The native method stacks are the stacks al-
located by the JVM for the native methods, methods written in lan-
guages other than Java.

� Per thread:

� A register. The program counter register contains the address of the
JVM instruction currently being executed in the thread.

� A stack. The stack stores the frames created for each method invo-
cation. It holds local variables and partial results, and plays a part
in method invocation and return. The stack may be allocated from
the heap.

� Per class or per interface:

� A constant-pool. The constant-pool contains the constants related
to the class or the interface, such as numeric literals or method and
field references.

� Per method invocation:

10



� A frame. The JVM creates a new frame with each new method invo-
cation. It destroys the newly created frame when the method com-
pletes. It allocates the frames from the stack of the current thread.
Each frame stores local variables, operands (including invocation ar-
guments), and contains a reference to the constant-pool for the type
of the current method. The reference to the constant-pool for the
type of the current method allows dynamic linking of the method
code and on-the-fly class loading.

Exercise 8 (Dynamic linking):
List the advantages and drawbacks of dynamic linking.

Exercise 9 (Exception):
Given the organization of the JVM at run-time, explain what happens when an
exception is thrown from within a method body.

The JVM reveal an underlying object model. This object model is almost
isomorphic to the Java programming language.

The JVM also includes a just-in-time compiler: The Java HotSpot Virtual
Machine (JHVM). The HotSpot technology was developed by Animorphics. An-
imorphics initially developed HotSpot for Smalltalk. They presented it at OOP-
SLA 1996 (?). Anita Iwing and Allen Wirfs-Brock, from Parc Place-Digitalk,
were interested in buying the HotSpot technology. Finally, Sun bought HotSpot
and Animorphics adapted it to Java later, with a lot of effort.

The JHVM improves the performances at run-time. The JHVM offers a
more efficient memory model, a more efficient garbage collector, an improved
thread synchronization mechanism, and just-in-time compilers. The JHVM
analyzes the code as it runs to detect critical hot-spots in the program, then it
compiles the intermediate language into native code. Thus, the JHVM increases
the performance and (in some cases) decreases the memory foot-print of the
program.

2.2 Java intermediate language

Reference: [13]

The intermediate language understood by the JVM is called Java byte-code.
A Java compiler produces Java byte-code and stores it in a binary file. The
binary file, containing the Java byte-code, has a platform-independent format:
The class-file format. The class-file format precisely defines the organizational
details of the binary file, for example the byte ordering or the set of valid
instructions.
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The set of valid instructions understood by the JVM is composed of one-byte
opocodes. An op-code specifies the operation the JVM must perform, followed
by zero or more operands. An operand is an argument or a piece of data used
to perform the operation.

Exercise 10 (One-byte op-codes):
List the advantages and drawbacks of the limitation of the op-code to one byte.

Most of the op-code encode type information about the operations they per-
form. They contain explicit references to the types on which they operate, for
exemple the iload op-code performs its operation on int and, thus, begins with
an i. All the mnemonic letters are: i for integer, l for long, s for short, b for
byte, c for char, f for float, d for double, and a for reference operations.
Some op-codes do not begin with a mnemonic letter because they operate only
on a certain type (for example, arraylength) or because they do not operate
on typed operands (for example, goto).

Exercise 11 (Typed op-codes):
List the advantages and drawbacks of typed op-codes.

Example 7 (Greatest Common Denominator algorithm in Java and in
Java byte-codes):
The following Java source code and Java byte-code implement the iterative Greatest
Common Denominator algorithm as described in Example 1.

public static int computeGCD(int a, int b) {

if (b == 0) {

return a;

}

else {

return computeGCD(b, a % b);

}

}

Method int computeGCD(int, int)

0 iload_1

1 ifne 6

4 iload_0

5 ireturn

6 iload_1

7 iload_0

8 iload_1

9 irem

10 invokestatic #25 <Method int computeGCD(int, int)>

13 ireturn

Exercise 12 (Understanding op-codes):
Manually execute the Java byte-code implementing the Greatest Common Denom-
inator algorithm of Example 7.
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2.3 Sandbox

Reference: [10]

A sandbox is usually a place where children play safely, protected from and
not disturbing the outside world. The JVM is such a sandbox, from the point
of view of the Java program–operating system relationships.

The Java program is isolated from the operating system. It runs in a similar
fashion regardless of the operating system. The Java developers do not need
to consider operating-system dependent characteristics when developing their
programs.

The JVM protects the operating system from any disturbance the Java pro-
gram might cause. The JVM defines and enforces the security rules that Java
programs must comply to. If a Java program does not comply with the JVM
rules, the JVM notifies the program using the exception mechanism.

However, the notion of sandbox also prevents sophisticated communication
between the Java program and the operating system. Thus, the JVM provides
three mechanisms to go around the sandbox principle: Dynamic class loading;
Native interface; and, a Security model.

2.4 Dynamic Class loading

Reference: [2] and [6]

The JVM calls the dynamic class loading mechanism when it requires a refer-
ence to a class that does not yet exist in the JVM. The class loading mechanism
of the JVM has the following characteristics:

� Lazy loading: The JVM loads the classes when it needs them.

� Type-safe linking: The class loading mechanism is safe thanks to the class-
verification mechanism.

� User-defined class loading policies: Users may define their own class load-
ing mechanisms.

� Multiple name-spaces: The class loading mechanisms enables multiple
name-spaces.
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The Java ClassLoader class constitutes the core of the class loading mecha-
nism. A class loader is an instance of the ClassLoader class and is responsible
for loading classes, through the loadClass() method: Given the name of a
class, the class loader attempts to locate (through the findClass() method) or
to generate data that constitutes a definition of the class. Once the class loader
has found the class-file corresponding to the required Java class, it provides the
definition of the class to the JVM, through the defineClass() method. (At
that point, the JVM has checked the correctness of the Java class-file, cf. Section
2.7.)

A user-defined class loader always has a parent class loader. The ultimate
class loader is the default class loader provided by the JVM. A user-defined
class loader may provide a complete implementation of the class ClassLoader
or delegate calls to its parent. The class loader initiating the loading of a class
may be different from the class loader defining the class. This is an important
feature when considering name-spaces.

Example 8 (A simple class loader):
Let consider a user-defined class loader UserCL. To load the class GCD, implementing
the Greatest Common Denominator algorithm in Java, the user uses the following
Java source code:

ClassLoader userCL = new UserCL();

Class gcdClass = userCL.loadClass("emn.course.vm.GCD");

The call to loadClass() locates the class-file using findClass(), and performs a
defineClass(). The class loader UserCL is responsible of the loading and of the
definition of the class GCD, we write 〈GCD, UserCL〉UserCL, or 〈GCD, UserCL〉.

Example 9 (Class loaders and name-space compatibility):
Let consider two class loaders: The default class loader provided by the JVM,
and UserCL, a user-defined class loader. The UserCL class loader delegates the
defineClass() call on its parent class loader. Let suppose the user requests the
class GCD twice: Once using UserCL class loader, then using the default class loader,
then:

ClassLoader userCL = new UserCL();

Class gcdClass1 = userCL.loadClass("emn.course.vm.GCD");

ClassLoader jvmCL = ClassLoader.getSystemClassLoader();

Class gcdClass2 = jvmCL.loadClass("emn.course.vm.GCD");

The call to userCL.loadClass() locates the class-file using findClass(), and calls
the defineClass() method on the default class loader, jvmCL. The UserCL class
loader is responsible of the loading of the class GCD, the JvmCL class loader is responsi-
ble of the definition of the class GCD, we write 〈GCD, JvmCL〉UserCL. The class ob-
tained from the UserCL class loader is the same as the class obtained from the default
class loader: 〈GCD, JvmCL〉UserCL is compatible with 〈GCD, JvmCL〉JvmCL
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Example 10 (Class loaders and name-space non-compatibility):
Let consider two class loaders: The default class loader provided by the JVM, and
UserCL, a user-defined class loader. The UserCL class loader calls the defineClass()
method. Let suppose the user requests the class GCD twice: Once using UserCL class
loader, then using the default class loader, then:

ClassLoader userCL = new UserCL();

Class gcdClass1 = userCL.loadClass("emn.course.vm.GCD");

ClassLoader jvmCL = ClassLoader.getSystemClassLoader();

Class gcdClass2 = jvmCL.loadClass("emn.course.vm.GCD");

The call to userCL.loadClass() locates the class-file using findClass(), and then
calls the defineClass() on the user-defined class loader. The UserCL class loader
is responsible of the loading of the GCD class and of the definition of the GCD

class, we write 〈GCD, UserCL〉UserCL. The class obtained from the UserCL

class loader is different from the class obtained from the default class loader:
〈GCD, UserCL〉UserCL is not compatible with 〈GCD, JvmCL〉JvmCL

The difficulty when using class loader is to keep the name-space compat-
ibility. When defining class-loaders, the user must avoid using the pseudo-
field class (for example, Class gcdClass = GCD.class) and use instead the
method Class.forName()
(for example,Class gcdClass = Class.forName("emn.course.vm.GCD")).
The user must use the user-defined class loader, through Class gcdClass =
userCL.loadClass("emn.course.vm.GCD").

Exercise 13 (Class loader and reference constant):
Let suppose the user adds a static constant of type Version (subclass of Object) to
the GCD class, implementing the Greatest Common Denominator algorithm:

public final class GCD {

public static Version version = new Version("YGG", 1.0);

...

}

From the examples 8, 9, and 10, describe what happens when the user does:

versionGCDClass1.getClass() == versionGCDClass2.version.getClass()

versionGCDClass1 == versionGCDClass2

After the user has requested the GCD class with the two different class loaders.
(Where versionGCDClass1 and versionGCDClass2 are references on the static field
of class gcdClass1 and gcdClass2, respectively.)

2.5 Garbage collection

Reference: [7]

Garbage collection is the process of automatically freeing objects that are no
longer referenced by the program. This frees the programmer from having to
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keep track of when to free allocated memory, thereby preventing many potential
bugs and headaches.

In addition to freeing unreferenced objects, a garbage collector may also re-
duce heap fragmentation. Heap fragmentation occurs through the course of
normal program execution. New objects are allocated, and unreferenced ob-
jects are freed such that free blocks of heap memory are left between blocks
occupied by live objects.

There are several existing garbage collection algorithms. The simplest garbage
collection algorithm is the Reference Counting Garbage Collector (RFGC). The
RFGC operates by counting the number of references pointing on an instance of
a class. If an instance of a class possesses zero reference pointing to it, the RFGC
discards it, because the remaining instances can not access it. The RFGC is
simple to understand. However, The RFGC is difficult to implement.

Then, two of the most famous are mark-and-sweep, and copying collector.
A mark-and-sweep garbage collector traverses all reachable objects in the heap
by following pointers beginning with the roots, i.e., pointers stored in statically
allocated or stack allocated program variables. All such reachable objects are
marked. A sweep over the entire heap is then performed to store unmarked
objects into a free list, so that they can be reallocated.

In contrast, a copying collector copies reachable objects to another region of
memory as they are being traversed. Provided the traversal is done in breadth-
first order, there is a well-known and simple algorithm for performing this traver-
sal without auxiliary storage or recursion. After such a traversal, all surviving
objects reside in a contiguous region of memory, and all pointers have been
updated to point to the new object locations. The previously used region of
memory can then be reused in its entirety. Allocation becomes trivial, since all
free space is always contiguous.

Garbage collection is a highly technical topic and is subject to many research
and industrial work. The author has no information on what kind of garbage
collector the JVM uses.
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2.6 Java Native Interface

Reference: [8]

The Java Native Interface (JNI) is a standard programming interface for call-
ing native methods from Java and embedding the JVM into native applications.
The primary goal is binary compatibility of native method libraries across all
Java virtual machine implementations on a given platform. A secondary goal is
to improve the efficiency of Java programs.

Exercise 14 (The Java Native Interface):
List other reasons for the existence of the JNI.

Primitive types, such as integers, characters... are copied between Java and
the native code. Arbitrary Java objects are passed by reference. The JVM
keeps track of all objects that have been passed to the native code, so that
these objects are not freed by the garbage collector. The native code has a way
to inform the JVM that it no longer needs the objects. In addition, the garbage
collector must be able to move an object referred to by the native code.

Example 11 (Greatest Common Denominator algorithm in C):
The Java source code in Figure 5 displays the result of a Greatest Common Denom-
inator algorithm implemented in C. The declaration of the native method (line 4)
creates a link between Java and the native code. The call to System.loadLibrary()

loads the dynamic linked library (DLL), where is the native implementation of the
native method (lines 5–7). The native method is used as any other Java method
(line 10).

The DLL containing the native code is shown in Figure 7. It contains a reference to
the C header in Figure 6. The C header is generated from the Java source code with
the javah tool: javah emn.course.vm.GCD_C. The DLL is obtained by compiling the
native source code:

cl /I%JAVA_HOME%\include /I%JAVA_HOME%\include\win32 /GD /LD GCD_C_Impl.c
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package emn.course.vm;

public final class GCD C {
public native int computeGCD(int a, int b);
static {

System.loadLibrary("GCD_C_Impl");
}
public static void main(final String[ ] args) {

final GCD C myJNICallToGCD = new GCD C();
System.out.println(myJNICallToGCD.computeGCD(6, 18)); 10

}
}

Figure 5: The Java class calling the native implementation of the Greatest Com-
mon Denominator algorithm (file emn/course/vm/GCD C.java)

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class emn course vm GCD 0005fC */

#ifndef Included emn course vm GCD 0005fC
#define Included emn course vm GCD 0005fC
#ifdef cplusplus
extern "C" {
#endif
/* 10

* Class: emn course vm GCD 0005fC
* Method: computeGCD
* Signature: (II)I
*/

JNIEXPORT jint JNICALL Java emn course vm GCD 1C computeGCD
(JNIEnv *, jobject, jint, jint);

#ifdef cplusplus
}
#endif 20

#endif

Figure 6: The C header generated from the Java class in Figure 5
(file emn course vm GCD 0005fC.h)
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#include "emn_course_vm_GCD_0005fC.h"

#include <stdio.h>

jint JNICALL Java emn course vm GCD 1C computeGCD(
JNIEnv *env,
jobject obj,
jint a,
jint b) {

if (b == 0) { 10

return a;
}
else {

return Java emn course vm GCD 1C computeGCD(env, obj, b, a % b);
}

}

Figure 7: The C implementation of the Greatest Common Denominator algo-
rithm (file GCD C Impl.c)

2.7 Security

Reference: [10]

The Java class-libraries enforce the security policies. The JVM has no concern
for the security policies. The JVM only checks if the Java class-files are well-
formed and secure with respect to stack management.

The JVM possesses a byte-code verifier to check if the Java class-files are
well-formed and secure. The JVM calls the byte-code verifier after the current
instance of ClassLoader has performed loadClass() and while it is performing
defineClass(). The byte-code verifier ensures that the Java byte-code does
not contain erroneous op-codes and does not attempt unsafe operations, such
as branch out of bounds, access or modification of a local variable at an index
greater than the number of local variables in the method...

Exercise 15 (Java class-libraries and byte-code security policies):
List the differences between security policies at the class-libraries level and at the
JVM level, and the reasons of these differences.
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2.8 Java Platform Debug Architecture

Reference: [4] and [9]

Sun develops a complete architecture to ease the debugging of Java programs:
The Java Platform Debug Architecture (JPDA).

Debugging a running program consists in collecting information about its
state at one point in time. Before the implementation of the JPDA, developers
had two solutions to debug Java programs:

� To include a trace in the execution flow of their Java programs. However,
including a trace in the program requires either to know where the unfit
behavior happens or to trace the whole program and thus to produce
overwhelming and uninteresting information.

� To modify or implement a JVM with tracing capabilities. However, mod-
ifying a JVM requires a deep understanding of the JVM inner parts; it
may break the JVM sandbox mechanism; and, it necessitates to repeat
the modifications for each new version of the JVM. Modifying the JVM is
even more difficult when debugging remote JVM.

Those are the reasons why Sun develops the JPDA as part of its JVM.

Exercise 16 (The Java Platform Debug Protocol):
List other reasons why Sun would develop the JPDA.

The JPDA is composed of three different levels, see in Figure 8:

� The Java Virtual Machine Debug Interface (JVMDI): A low-level native
interface. JVMDI defines the services a JVM must provide for debugging.

� The Java Debug Wire Protocol (JDWP): The format of information and
requests transferred between the debugging process and the debugger
front-end.

� The Java Debug Interface (JDI): A high-level Java programming language
interface, including support for remote debugging.

As of version 1.4.1, the JVM now uses full-speed debugging. In the previous
version of the JVM, when debugging was enabled, the program executed using
only the interpreter. Now, full performance is available to programs running
with debugging enabled. The improved performance allows long running pro-
grams to be more easily debugged. It also allows testing to proceed at full speed
and the launch of a debugger to occur on an exception.

The JVM also provides an API to substitute modified code for a program in a
running JVM. This feature, called HotSwap, allows developers and maintainers
to recompile a single class and to replace the old version of the class with the
new version.
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Figure 8: The three different levels of specification as defined by the Java Plat-
form Debug Architecture.

2.8.1 Java Virtual Machine Debug Interface

The JVMDI is a native interface implemented by the JVM. It defines the
services a JVM must provide for debugging. It includes requests for information
(for example, the current stack frame), actions (for example, set a breakpoint),
and notification (for example, when a breakpoint has been hit). A debugger may
use other JVM information (for example, through the Java Native Interface),
but this debugger specific information reduces portability.

The tables in Figure 9 summarize the different functions provided by the
JVMDI.

Exercise 17 (JVMDI functions):
Read through all the JVMDI functions and find out their semantics.

Exercise 18 (On the usage of JVMDI functions):
Given the functions provided by the JVMDI, think of original information that
could be extracted using the JVMDI. For example, how would you monitor the
life-cycle of an instance (creation and garbage collection), using the JVMDI?

Exercise 19 (On other languages):
The JPDA has been extended so that non-Java programming language source, which
is translated to Java programming language source, can be debugged in the future.
Find out the methods specifically defined to handle debugging foreign source code.

2.8.2 Java Debug Wire Protocol

The JDWP defines the format of information and requests transferred be-
tween the debugged process and the debugger front-end. It does not define the
transport mechanism (socket, serial line, shared memory...). The specification
of the protocol allows the debugged process and the debugger front-end to run
under separate JVM and–or on separate platforms. It also allows the front-
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Category Function

Memory Management Set Allocation Hooks
Allocate Memory
Deallocate Memory

Thread Execution Get Thread Status
Get All Threads
Suspend Thread
Resume Thread
Stop Thread
Interrupt Thread
Get Thread Info
Get Owned Monitor Info
Get Current Contended Monitor
Run Debug Thread

Thread Groups Get Top Thread Groups
Get Thread Group Info
Get Thread Group Children

Stack Frame Access Get Thread’s Frame Count
Get Thread’s Current Frame
Get Caller Frame
Frame Location
Notify Frame Pop

Local Variable Access Get Local Variable
Set Local Variable

Breakpoints Set a Breakpoint
Clear a Breakpoint
Clear All Breakpoints

Watched Fields Set a Field Access Watch
Clear a Field Access Watch
Set a Field Modification Watch
Clear a Field Modification Watch

Raw Monitor Support Create Raw Monitor
Destroy Raw Monitor
Raw Monitor Enter
Raw Monitor Exit
Raw Monitor Wait
Raw Monitor Notify
Raw Monitor Notify All

Category Function

Class Information Class Signature
Class Status
Source File Name
Class Access Flags
Class Methods
Class Fields
Implemented Interfaces
Is an Interface
Is an Array
Class Loader

Object Information Object Hash Code
Get Monitor Info

Field Information Field Name and Signature
Field Declaring Class
Field Access Flags
Is Field Synthetic

Method Information Method Name and Signature
Method Declaring Class
Method Access Flags
Maximum Stack
Local Slots
Argument Slots
Source Line Numbers
Method Location
Local Variables
Exception Handlers
Thrown Exceptions
Get Byte-codes
Is Method Native
Is Method Synthetic

Events Set Event Hook
Enable/Disable Events

Miscellaneous Get Loaded Classes
Get Class-loader Classes
Get Version Number
Get Capabilities

Figure 9: The functions provided by the JVMDI.
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end to be written in a language other than Java. Information and requests
are roughly at the level of the JVMDI, and include additional information and
requests necessitated by bandwidth issues, for example filters.

2.8.3 Java Debug Interface

The JDI is a 100%-Java interface implemented by the front-end. It defines
information and requests at a user level. While debugger implementors could
directly use the JDWP or the JVMDI, this interface greatly facilitates the in-
tegration of debugging capabilities into development environments.

Example 12 (A JPDA-based tool to control an implementation of the
Greatest Common Denominator algorithm, both in Java):
The source codes in Figures 11 and 12 represent a simple Java-implementation of the
Greatest Common Denominator algorithm, and a simple JPDA-based tool to control
the Java-implementation of the Greatest Denominator algorithm, respectively.

The Java-implementation of the Greatest Common Denominator algorithm creates
an instance of JFrame (a window) that embeds an instance of JTextField (a text
field) (lines 5–16). It calls the Greatest Common Denominator algorithm, as pre-
sented in Example 7, and displays the result into the instance of JTextField (lines
18–32).

The JPDA-based tool does:

� Get an instance of the virtual machine manager through the Bootstrap class
(line 6: JDI).

� Get the default instance of the class LaunchingConnector. The instance
of class LaunchingConnector allows the communication between the current
virtual machine and the remote virtual machine (line 7: JDWP).

� Compute the arguments for the remote virtual machine to run the desired
class (lines 8–15).

� Start the remote virtual machine with the previously-built arguments, using
the communication channel (instance of class LaunchingConnector). All the
threads are by default suspended in the remote virtual machine (in Sun’s
current implementation), they must be resumed (lines 16–17: JDI + JDWP
+ JVMDI)).

� Build an instance of JFrame (a window) with two instances of JButton (two
buttons), to suspend/to resume and to stop the remote virtual machine (lines
18–48: JDI + JDWP + JVMDI).

Figure 10 illustrates the JPDA-based control tool and the Greatest Common De-
nominator algorithm.

Figure 10: The control tool and the Greatest Common Denominator algorithm,
in Java, and in action.
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// Package and import declarations not shown for conciseness.

public final class GCD {
public static void main(String[ ] args) {

JFrame frame = new JFrame("Euclid’s GCD algorithm");
frame.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {
System.exit(0);

}
10

});
frame.setLocation(400, 100);
frame.setSize(300, 100);
JTextField text = new JTextField("Results");
frame.getContentPane().add(text);
frame.setVisible(true);

int a = 6;
int b = 18;
StringBuffer buffer = new StringBuffer(); 20

while (true) {
buffer.setLength(0);
buffer.append(text.getText());
buffer.append("\n\rGCD(");
buffer.append(a);
buffer.append(", ");
buffer.append(b);
buffer.append(") = ");
buffer.append(computeGCD(a, b));
text.setText(buffer.toString()); 30

a = a + 1;
b = b + 3;

}
}

public static int computeGCD(int a, int b) {
if (b == 0) {

return a;
}
else { 40

return computeGCD(b, a % b);
}

}
}

Figure 11: Euclid’s Greatest Common Denominator algorithm in Java.
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// Package and import declarations not shown for conciseness.

public final class GCDDebugger {
public static void main(String[ ] args) {

try {
final VirtualMachineManager vmManager = Bootstrap.virtualMachineManager();
final LaunchingConnector launchingConnector = vmManager.defaultConnector();
final Map arguments = launchingConnector.defaultArguments();
final Iterator iterator = arguments.values().iterator();
while (iterator.hasNext()) { 10

final Argument argument = (Argument) iterator.next();
if (argument.name().equals("main")) {

argument.setValue("emn.course.vm.GCD");
}

}
final VirtualMachine vm = launchingConnector.launch(arguments);
vm.resume();
final JFrame frame = new JFrame("Euclid’s GCD algorithm debugger");
frame.setLocation(100, 100);
frame.setSize(300, 100); 20

frame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {

System.exit(0);
}

});
frame.getContentPane().setLayout(new BorderLayout());
final JButton suspendResumeButton = new JButton("Suspend");
suspendResumeButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
JButton button = (JButton) e.getSource(); 30

if (button.getText().equals("Suspend")) {
button.setText("Resume");
vm.suspend();

} else {
button.setText("Suspend");
vm.resume();

}
}

});
frame.getContentPane().add(suspendResumeButton, BorderLayout.CENTER); 40

final JButton stopButton = new JButton("Stop");
stopButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
vm.exit(0);

}
});
frame.getContentPane().add(stopButton, BorderLayout.EAST);
frame.setVisible(true);

}
catch (Exception e) { 50

e.printStackTrace();
}

}
}

Figure 12: A tool to control Euclid’s Greatest Common Denominator algorithm,
both implemented in Java.
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2.9 Java Virtual Machine Profiler Interface

Reference: [11]

Sun is defining a standard profiling interface for the JVM, the Java Virtual
Machine Profiler Interface (JVMPI). Sun provides the current implementation
and documentation for the benefit of tool vendors who have an immediate need
for profiling hooks in the JVM. The JVMPI continues to evolve, based on the
feedback from customers and tool vendors.

The JVMPI defines a set of events and a set of data structures. The JVMPI-
based tool tells the JVM the events it is interested in, and gives the JVM a
pointer on the function to call when such events occur; the JVM calls this
function and passes to it the data structure corresponding to the event.

The events known by the JVM are:

� Method enter and exit;

� Object allocate, move, and free;

� Heap arena create and delete;

� GC start and finish;

� JNI global reference allocate and free;

� JNI weak global reference allocate and free;

� Compiled method load and unload;

� Thread start and end;

� Class file data ready for instrumentation;

� Class load and unload;

� Contended Java monitor wait to enter, enter, and exit;

� Contended raw monitor wait to enter, enter, and exit;

� Java monitor wait and waited;

� Monitor dump;

� Heap dump;

� Object dump;

� Request to dump or to reset profiling data;

� JVM initialize and shutdown;
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Exercise 20 (JVMPI events):
Identify the role and give an example of each event.

Example 13 (A profiling-tool for the Greatest Common Denominator
implemented in Java):
The source code in Figure 13 shows a simple profiling-tool for the JVM, based on
the JVMPI. This profiling-tool shows the names of the threads running in the JVM,
and displays the names of the loaded classes (java and sun packages excluded).

First, the profiling-tool gets a pointer on the JVMPI (line 37–40). Then, it tells the
JVM of the function to call when an event arrives: It passes to the JVM a pointer
on the NotifyEvent() function (line 43). The profiling-tool notifies the JVM of the
events it is interested in: It calls the EnableEvent() function with the appropriate
JVMPI constants (lines 46–47).

When an interesting action occurs in the JVM (an action in which the profiling-
tool is interested (lines 46–47)), the JVM calls the NotifyEvent() function defines
lines 7–30. The NotifyEvent() function displays information according to the event
received: The name of the loaded classed (java and sun packages excluded) or the
name of the started threads.

The profiling-tool, named PCVM, profiles the Greatest Common Denominator al-
gorithm implemented in Java when the JVM is called with the following syntax:

java -XrunPCVM emn.course.vm.GCD

In the console, the profiling-tool displays the following information:

Initializing the profiler for the Course on VMs.

Initialization done.

> Thread started: Signal Dispatcher

> Thread started: CompileThread0

> Class loaded: com.sun.rsajca.Provider

> Class loaded: com.sun.rsajca.Provider$1

> Class loaded: emn.course.vm.GCD

> Thread started: AWT-EventQueue-0

> Thread started: SunToolkit.PostEventQueue-0

> Thread started: AWT-Windows

> Class loaded: emn.course.vm.GCD$1

> Thread started: TimerQueue

> Thread started: Thread-0

Exercise 21 (The Java Virtual Machine Profiler Interface):
List some uncommon applications of the JVMPI.
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#include <jvmpi.h>

// Define global JVMPI interface pointer
static JVMPI Interface *jvmpi interface;

// Define the function for handling event notification
void NotifyEvent(JVMPI Event *event) {

const char *class name;
const char *thread name;

10

switch(event−>event type) {
case JVMPI EVENT CLASS LOAD:

class name = event−>u.class load.class name;
if (!((class name[0] == ’j’ &&

class name[1] == ’a’ &&
class name[2] == ’v’ &&
class name[3] == ’a’)
| |
(class name[0] == ’s’ &&
class name[1] == ’u’ && 20

class name[2] == ’n’))) {
fprintf(stderr, "> Class loaded: %s\n", class name);

}
break;

case JVMPI EVENT THREAD START:
thread name = event−>u.thread start.thread name;
fprintf(stderr, "> Thread started: %s\n", thread name);
break;

}
} 30

// Profiler agent entry point
JNIEXPORT jint JNICALL JVM OnLoad(JavaVM *jvm, char *options, void *reserved) {

fprintf(stderr, "Initializing the profiler for the Course on VMs.\n");

// Get JVMPI interface pointer
if (((*jvm)−>GetEnv(jvm, (void **)&jvmpi interface, JVMPI VERSION 1)) < 0) {

fprintf(stderr, "Initialization error in obtaining JVMPI interface pointer.\n");
return JNI ERR;

} 40

// Initialize the JVMPI interface
jvmpi interface−>NotifyEvent = NotifyEvent;

// Enable "class load"− and "thread start"−event notification
jvmpi interface−>EnableEvent(JVMPI EVENT CLASS LOAD, NULL);
jvmpi interface−>EnableEvent(JVMPI EVENT THREAD START, NULL);

fprintf(stderr, "Initialization done.\n\n");
return JNI OK; 50

}

Figure 13: A profiling-tool for the JVM, based on the JVMPI.
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2.10 A brief comment

The Java programming language and the JVM offer a great potential and
numerous interesting functionalities.

However, the Java programming language and the JVM do not reify most
of the JVM functionalities. This lack of reification defeats the purpose of the
object-oriented paradigm, because the execution mechanism, the object creation
mechanism... are external to the Java language and the JVM.
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3 Other languages in a nutshell

There exist several programming languages and environments that use vir-
tual machines. In this section, we present four programming languages and
their virtual machines in a nutshell. The objective is not to give an in-depth
presentation of the virtual machines, the objective is to give some ideas on the
wide range on virtual machines implementations and usages.

Exercise 22 (A world of virtual machines):
List several languages with specific virtual machines, especially, take a look at the
virtual machines dedicated to functional programming languages, such as Lisp and
Scheme.

3.1 Pascal

Reference: [14]

The Pascal programming language was the first to use an intermediate lan-
guage and a virtual machine: The UCSD p-System.

The UCSD p-System is a portable operating system that was popular in
the early days of computer science, in the late 1970s and early 1980s. It is
based on a virtual machine with a standard set of low-level, machine-language-
like p-Code instructions that are emulated on different hardware. The most
popular language for the p-System is UCSD Pascal. The p-System operating
system itself is written in UCSD Pascal: This makes the entire operating system
relatively easy to port across platforms.

3.2 C]

Reference: [3] and [5]

The C] programming languages is the main entry point to the Microsoft .Net
programming platform. The .Net platform defines an intermediate language, an
object-model, a set of base class-libraries, an execution framework, and several
run-time services. The material available on the .Net platform is still enormous
and fast-growing. The following presentation of the .Net platform from the
run-time point of view is brief and misses important points.

From the run-time perspective, the .Net platform decomposes into several
parts:

� MSIL: The Microsoft Intermediate Language.

� CLR: The Common Language Runtime.

� BCL: The Base Class-Libraries.
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� COM: The .Net platform includes native support for the Component
Object Model (COM).

� Web services: The .Net platform integrates the definition and the usage
of Web services.

Exercise 23 (The .Net platform):
Search information on the features of .Net platform.

The .Net platform defines a general object model, the Virtual Object System
(VOS). This object model supports several kind of method dispatch, it limits
inheritance to single class inheritance and multiple abstract class (interface)
inheritance. At run-time, data exists as scalars, as references, and as instances
of value classes. The VOS allows two different method invocation mechanisms:
Virtual dispatch and non-virtual dispatch. The VOS may pass parameters by
value or by reference.

The instructions defined by the MSIL, in opposition to the JVM op-codes,
have no specific data types.

Exercise 24 (The .Net platform run-time and multi-languages):
Assess how the .Net platform run-time features enable the .Net platform to support
different languages and different programming paradigms.
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Example 14 (Greatest Denominator algorithm in the Microsoft Interme-
diate Language):
The following code represents the MSIL code required to implement the Greatest
Common Denominator algorithm as described in Example 7.

.method public hidebysig static int32 ComputeGCD(int32 a,

int32 b) cil managed

{

// Code size 21 (0x15)

.maxstack 3

.locals (int32 V_0)

IL_0000: ldarg.1

IL_0001: brtrue.s IL_0007

IL_0003: ldarg.0

IL_0004: stloc.0

IL_0005: br.s IL_0013

IL_0007: ldarg.1

IL_0008: ldarg.0

IL_0009: ldarg.1

IL_000a: rem

IL_000b: call int32 GCD::ComputeGCD(int32,

int32)

IL_0010: stloc.0

IL_0011: br.s IL_0013

IL_0013: ldloc.0

IL_0014: ret

} // end of method GCD::ComputeGCD

3.3 Prolog

Reference: [19]

Logic programming languages, such as Prolog, stirred up much research works
on their implementation. The common implementation of Prolog uses the War-
ren Abstract Machine (WAM). The WAM is an abstract machine consisting of a
memory architecture and an instruction set tailored to Prolog. It can be realized
efficiently on a wide range of hardware, and serves as a target for portable Pro-
log compilers. It has now become accepted as a standard basis for implementing
Prolog.

The WAM is a stack machine with registers. The WAM adopts structure
copying to represent Prolog terms. A heap exists, but the WAM reduces its use
to the maximum. The WAM uses the heap to store variables and structures.
The WAM includes a special stack, called the Push-Down-List, to memorize
unifications. The WAM also has another stack to keep trace of choice points
and of environment frames. Finally, the WAM possesses a special stack, the
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trail. The trail is organized as an array of addresses of the (stack or heap)
variables that must be reset (set to unbound) upon backtracking.

The WAM does not provide debugging or profiling possibilities in itself. On
one hand, the WAM is a theoretical work on virtual machine implementation
for logic programming. On the other hand, some authors have proposed formal
definition of the WAM and have proved the correctness of compilers: This is a
very formal and theoretical approach to virtual machines.

Exercise 25 (Warren Abstract Machine):
List the differences between the Warren Abstract Machine and the Java Virtual
Machine. Compare the execution of a Prolog program with the execution of a Java
program.

3.4 Squeak

Reference: [12]

The Squeak programming environment is a direct descendant of the original
Smalltalk programming environment. The Squeak programming environment
includes the Squeak Object Engine.

The Squeak Object Engine (SOE) encompasses both the Smalltalk low-level
system code (the Context, Process, Number, InstructionStream, and Class
classes) and the virtual machine. The SOE contains a stack machine. The SOE
is written in a subset of Smalltalk. The SOE does provide memory handling,
meta-programming capability, accessible threads and control structures, mes-
sage sending, object creation... Theoretically, it is possible for a SOE to run
into another SOE.

The SOE is implemented with simplicity in mind. It offers a simple and ex-
tensible architecture. It does not offer direct debugging or profiling capabilities,
however, it must be possible to debug or to profil Squeak application by running
the application within a SOE running itself within a SOE.

Exercise 26 (Squeak implementation of the Squeak virtual machine):
List the advantages and drawbacks of the Squeak virtual machine being imple-
mented in Squeak. Study and explain the interface between the Squeak virtual
machine and the operating system.
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4 Other ideas in a nutshell

4.1 Proof-carrying code

Reference: [1]

Proof-Carrying Code (PCC) is the technique to guarantee that a program does
not access unauthorized resources, read private data, and overwrite valuable
data. With PCC, the run-time environment defined a safety policy, which tells
under what conditions a word of memory may be read or written or how much
of a resource may be used (such as CPU cycles). The program must provide
a program-verification proof that it satisfies the safety policy. With PCC, the
proof is performed on the native machine code and it may be fully automatically
built. The PCC can use both types and data flow to prove safety.

4.2 Strongly-typed intermediate languages

Reference: [16]

Statically typed intermediate languages are effective tools for staging the com-
pilation of high-level languages. Types express invariants that help programmers
understand their programs, and strongly typed languages prevent many com-
mon programming errors. Compiler writers can use these properties to debug
sophisticated program transformations such as closure conversion and optimiza-
tions like data-type specialization. Types not only help check the correctness of
transformations but enable analyses or optimizations that are extremely difficult
without them.
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The author would like to thank Hervé Albin-Amiot, Xavier Alvarez, Pierre-
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